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SUMMARY

This paper discusses incompressible Navier-Stokes solution methods and their applica-

tions to three-dimensional flows. A brief review of existing methods is given followed

by a description of recent progress on development of three-dimensional generalized flow

solvers. Emphasis is placed on primitive variable formulations which are most promising

and flexible for general three-dimensional computations of viscous incompressible flows.

Both steady- and unsteady-solution algorithms are discussed. Finally, examples of real

world applications of these flow solvers are given.
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1. INTRODUCTION

Viscous incompressible flows have played an important role both in basic fluid dynamics

research and in industrial applications. In two-dimensional studies, incompressible flows

have been a convenient choice for laboratory experiments such as low speed wind tunnel or

water tank experiments. Computational study of these flow problems have been performed

for several decades and naturally various viscous incompressible flow solution methods have

been developed. In many realistic engineering applications, incompressible flows are also

encountered. Naming a few, there are problems related to low speed aerodynamics and

hydrodynamics such as the flow around high lift devices, the flow around submerged vehi-

cles, flow through impeller passages, mixing of the flow in chemical reactors, coolant flow

in nuclear reactors, and certain biofluid problems. There are algorithmic simplifications

as well as geometric modeling involved in computing these flows. Furthermore, significant



physical modeling is also required, such as turbulence modding for high Reynolds number

flows. Therefore, numerical computation of these flows, especially in three dimensions,

becomes both an art and a science.

Until the recent past, computational flow simulation has not been a critical element in

resolving many engineering problems. For instance, impellers, automobiles, submarines,

and chemical reactors have been designed reasonably well by empirical means. As tech-

nologies advance, modern flow devices tend toward a more compact and highly efficient

design. Therefore, the approach relying on empiricism and simplified analysis becomes in-

adequate for resolving problems associated with those devices requiring advanced analysis.

For example, in analyzing and redesigning the current Space Shuttle main engine (SSME)

power head, computational simulations became an economical and time-saving supple-

ment to experimental data. There are vast numbers of other real-world problems which

demand accurate viscous, incompressible flow solutions, such as rocket-engine fuel flow,

flow through an impeller and blood flow through a ventricular assist device. Therefore,

it is of considerable interest to have a computational fluid dynamics (CFD) capability

for simulating these important applications as an alternative to analytical or empirical

approaches.

The present report summarizes our recent progress in developing viscous incompressible

flow solvers and their applications to real world problems. Among various approaches, the

primitive variable formulation is considered to be the most promising for 3-D applications,

and is therefore emphasized. In the present paper, brief descriptions of various methods

are given followed by some computed results.

2. SOLUTION METHODS

2.1 Formulation

The incompressible Navier-Stokes equations for 3-D flows can be written in curvilinear

coordinates, (_, 71,_), as

- - = -÷ (2.1)

° (2.2)
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where
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J=
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L +

+ + +
Jacobian of the transformation

(2.3)

Here, t is the time, zi the Cartesian coordinates, ui the corresponding velocity components,

p the pressure, and v the total kinematic viscosity. A constant viscosity is assumed for

simplicity and all variables are nondimensionalized by a reference velocity and length scale.

The major difference between the incompressible and the compressible Navier-Stokes for-

mulation is the lack of a time derivative term in the continuity equation. Therefore,

satisfying the mass conservation equation is the primary issue in solving the above set of

equations. Among various techniques, the primitive variable formulation, namely, using

pressure and velocities as dependent variables, is chosen for convenience and flexibility in

3-D applications. A brief review is given next on methods using primitive variables.

2.2 Previous Work Using Primitive Variables

The solution method using primitive variables has been frequently chosen in 3-D problems.

Among many variations of this approach, several commonly used methods are summarized

here.

2.2.1 Methods Based on Pressure Iteration

MAC Method

Perhaps the first primitive variable method is the marker-and-cell (MAC) method devel-

oped by Harlow and Welch (1965). In this method, the pressure is used as a mapping

parameter to satisfy the continuity equation. By taking the divergence of the momentum

equation, the Poisson equation for pressure is obtained. The usual computational proce-

dure involves choosing the pressure field at the current time step such that continuity is

satisfied at the next time step. To satisfy the continuity equation in grid space, the diver-

gence of the gradient form of the Laplacian operator has to be used. This is essential in

satisfying the mass conservation in grid space (see Kwak, 1989). The original MAC method

is based on a staggered arrangement on a 2-D Cartesian grid. The staggered grid avoids



odd-evenpoint decoupling of the pressure encountered in a regular grid (Gresho and Sani,

1987). However, these properties become unclear in the case of generalized coordinates.

Ever since its introduction, numerous variations of the MAC method have been devised

and successful computations have been made. Many more examples can be found in the

literature, for example, by Roach (1972), Ferziger (1987), Orszag and Israelli (1974).

The major drawback of this method is the large computing time required for solving the

Poisson equation for pressure. When the physical problem requires a very small time step,

the penalty paid for an iterative solution procedure for the pressure may be tolerable.

SIMPLE Method

In the MAC method, the strict requirement of obtaining the correct pressure for a

divergence-free velocity field at each step slows down the overall computational emciency

significantly. However, for a steady-state solution, the pressure-iterations procedure can be

simplified such that it requires only a few iterations at each time step. The best known ex-

ample of this approach is the SIMPLE method (Semi-Implicit Method for Pressure-Linked

Equations) developed by Caretto et al. (1972), see also Patankar and Spalding (1972) or

Patankar (1980).

The method begins with a guessed pressure, which is usually assumed to be the pressure at

the previous step. Then the momentum equation is solved to get an intermediate velocity.

Then pressure and the velocity corrections are obtained from a simplified momentum

equation. The procedure in essence results in a simplified Poisson equation for pressure,

which can be solved iteratively line-by-line. The unique feature of this method comes

from the simple way of estimating the velocity correction. Despite this simplification,

many computations have been done successfully. Further details of SIMPLE and other

variations can be found in the literature, for example, see Patankar (1980).

Fractional-Step Method

The fractional-step method can be used for time-dependent computations (see, Chorin,

1968; Yanenko, 1971; Marchuk, 1975). The common application of this method involves

two steps. The first step is to solve for an auxilary velocity field using the momentum

equation in which the pressure-gradient term can be estimated from the pressure in the

previous time-step (see Dwyer, 1986) or can be excluded entirely (see Kim and Moin,

1985). In the second step, the pressure is computed in such a way as to map the auxiliary

velocity onto a divergence-free velocity field.

One particular aspect of the fractional step method requiring special care is the inter-

4



mediate boundary conditions. Orszag et al. (1986) discussed this extensively. As with

other pressure based methods, the efficiency of the fractional step method depends on the

Poisson solver. A multigrid acceleration, which is physically consistent with the elliptic

field, is one possiblility to enhance the computational efficiency.

2.2.2 Methods Based on Compressible Flow Algorithms

Recent advances in the state of the art in CFD have been made in conjunction with

compressible flow computations. Therefore, the compressible flow algorithms are of signif-

icant interest. To apply these algorithms, the artificial compressibility method of Chorin

(1967) can be used. In this formulation, the continuity equation is modified by adding a

time-derivative of the pressure term. Together with the unsteady momentum equations,

this forms a hyperbolic-parabolic type of time-dependent system of equations. Thus, fast

implicit schemes developed for compressible flows, such as the approximate-factorization

scheme by Beam and Warming (1978) and the implicit lower-upper symmetric-Gauss-Seidel

(LU-SGS) scheme by Yoon and Jameson (1987), can be implemented. Various applications

evolved from this concept have been reported for obtaining steady-state solutions (e.g.,

Steger and Kutler, 1977; Kwak et al. 1986, Chang et al., 1984,1988; Choi and Merkle,

1985). To obtain time-dependent solutions using this method, an iterative procedure can

be applied in each physical time step such that the continuity equation is satisfied. Merkle

and Athavale (1987) and Rogers and Kwak (1988, 1989) reported successful computations

using this pseudotime iteration approach.

This method, known as the pseudocompressibility method, has been extensively utilized

in developing several incompressible Navier-Stokes codes at NASA Ames Research Center.

Further discussion of this method is given next.

2.3 Pseudocompressibility Method

As introduced in the previous section, the pseudocompressibility method can be used for

both steady and time-dependent problems. In this section, several solution procedures

using this method are outlined.

2.3.1 Steady-State Formulation

The pseudocompressibility relation is introduced by adding a time derivative of pressure

to the continuity equation, which results in

oq_- i (/_i -/_'_') = -/_ (2.4)



where /_ is the right-hand-side of the momentum equation and can be defined as the

residual for the steady state computations, and where

b = --D = _1 #,i = _(Ui-(_i)t)/d , _#,,i = 0 (2.5)
d d ' _i d,,i

In the steady-state formulation the equations are to be marched in a time-like fashion until

the divergence of velocity converges to zero. The time variable for this process no longer

represents physical time. Therefore in the momentum equations t is replaced with r, which

can be thought of as a pseudotime or iteration parameter.

2.3.2 Steady-State Algorithm Using Approximate Factorization

An unfactored implicit scheme can be written in delta form as follows:

hj _ _

i

L J

where

(2.6)

___ 0 0 ODF,D "+_ = (_)V_. (V_ + V_N + v_l_..etc.

h=Ar for trapezoidal, or 2At for Euler

I,,_ = diag[O, 1, 1, 1]

At this point it should be noted that the notation of the form [6_(A - F)]D refers to

_(AD)- _(FD). The flux vector Ei and the Jacobian matrices are represented by

/_/= _7, F, or G and ¢ii= A,/_,or (_ for i = 1,2, or 3, respectively.

ADI scheme

The solution of equation (2.6) would involve a formidable matrix inversion problem. With

the use of an ADI (alternating direction implicit) type scheme, the problem could be

reduced to the inversion of three matrices of small bandwidth, for which there exist some

efficient solution algorithms. One particular ADI form used here is known as approximate

factorization (AF) (Beam and Warming, 1978). Using this form, the governing equation

becomes

LeL,TL¢(D n+_ - D") = RHS (2.7)
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where

_i represents the orthogonal part of the viscous term and RHS is the right-hand side

of equation (2.6) where the entire viscous term is used to maintain the accuracy of the

solution. When second-order central differencing is used, the solution to this problem

becomes the inversion of three block tridiagonal matrices, which can be diagonMized (see

Rogers et al., 1987).

LU-SGS scheme

Recently, Yoon and Jameson (1987) developed an implicit lower-upper symmetric-Gauss-

Seidel (LU-SGS) scheme for the compressible Euler and Navier-Stokes equations. A sim-

ilar scheme is devised for the pseudocompressible formulation (Yoon and Kwak, 1989).

This LU-SGS scheme is not only unconditionally stable but completely vectorizable in

three-dimensions. Spacial differencing can be either central or upwind depending on the

numerical dissipation model which augments the finite volume method (Yoon and Kwak,

1988). This scheme is described below.

Starting from an unfactored implicit scheme similar to equation (2.6)

x+_
(2.6')

The LU-SGS implicit factorization scheme can be derived as

LzLd-IL_, = RHS (2.s)

where

h(_-¢_i+ + 6-,_} + + _-_0 + - A- - _- - O-)Ll I +

L d = X "4- h ( fii + -- f4 + "4".B+ - .B - "4-
_+ _-)

h (_+_;t- + _+,,[_- + _+¢0- + A+ + B+ + 0 +)L,, I +

where $-_ and $+_ are backward and forward difference operator respectively. In the

framework of the LU-SGS algorithm, a variety of schemes can be developed by different

choices of numerical dissipation models and Jacobian matrices of the flux vectors. Further

details of this method will be given in a later report (Yoon and Kwak, 1989).
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2.3.3 Time-Accurate Formulation

Time-dependent calculation of incompressible flows are especially time consuming due

to the elliptic nature of the governing equations. Therefore, it is particularly desirable

to develop computationally efficient methods by implementing a fast algorithm and by

utilizing computer characteristics such as vectorization and parallel processing. In this

section, a time-accurate method using pseudocompressibility developed by Rogers and

Kwak (1988, 1989) is briefly introduced.

In this formulation the time derivatives in the momentum equations are differenced using

a second-order, three-point, backward-difference formula

3fi-+a _ 4fi,_ + fi,_-I

2At = __n+l (2.9)

where the superscript n denotes the quantities at time t = nAt and _ is the right-hand

side given in equation (2.1). To solve equation (2.9) for a divergence free velocity at the

nq-1 time level, a pseudo-time level is introduced and is denoted by a superscript m. The

equations are iteratively solved such that fi.+I,"`+I approaches the new velocity fi.+a as

the divergence of fi.+a,"`+a approaches zero. To drive the divergence of this velocity to

zero, the following artificial compressibility relation is introduced:

pn+ 1 ,"`+ 1 __ pn+ 1 ,m

AT = -/37. fi,_+a,"`+a (2.10)

where r denotes pseudo-time and/3 is an artificial compressibility parameter. Combining

equation (2.10) with the momentum equations gives

I "+1''+1 b "+1tr_ -- '"`)

= -R "+1''+1 5b.+l,"` - 2b" + 0.59 "-1) (2.11)

where/) is the same vector defined in equation (2.5) and k is the same residual vector

defined in equation (2.4). Also appearing in this equation is It,- which is a diagonal matrix

and I"` which is a modified identity matrix given by

It,. =diag[_ r 1.5 1.5 1.5 ]' At' At' , Im=diag[0,1,1,1]

Finally, the residual term at the m+l pseudo-time level is linearized, giving the following

equation in delta form

= _kn+l, "` __ __

n+ l,"`"

(D_'+1,"`+1 _ Dn+l,"`)

/"` " "n+l m

_-_(1.5D ' - 2/)" + 0.5D "-1)

(2.12)
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The derivatives of the viscous fluxes in this vector are approximated using second-order

central differences. The convective flux terms can be discretized using central differences•

However, this will require numerical dissipation terms for stability. Since, in the pseu-

docompressible formulation, the governing equations are changed into the hyperbolic-

parabolic type, some of the upwind differencing schemes which have recently been de-

veloped for the compressible Euler and Navier-Stokes equations by a number of authors

(i.e. Roe, 1981; Chakravarthy and Osher, 1985; Steger and Warming, 1981; Harten et al,

1983) can be utilized. In the present work, Roe's method (1981) was used in differenc-

ing the convective terms by an upwind method. Then the set of numerical equations is

solved using a nonfactored line relaxation scheme similar to that employed by MacCormack

(1985).

Further information on the pseudocompressibility method can be found in the References.

2.4 Fractional Step Method

In the previous section, the pseudocompressibility approach was described for obtaining

time-accurate solutions. An alternative approach is the pressure iteration method. Among

several choices in this category, the fractional step method allows flexibility in combining

various operator splitting techniques. Among its numerous variants, a general 3-D frac-

tional step procedure developed by Rosenfeld et. al. (1988, 1989) is described in this

section.

2.4.1 Formulation

The equations governing the flow of isothermal, constant density incompressible, viscous

fluids in a time-dependent control volume with the face S(t) and volume V(t) are written

in integral form for the conservation of mass

-_- + as. (u - v) = 0 (2.13)

and for the conservation of momentum

0 /vudV fsdS " (2.14)&

where t is the time, u is the velocity vector, v is the surface element velocity resulting

from the motion of the grid, and dS is a surface area vector. The tensor T is given by

= -(u - v)u - p t + v (Vu + (Vu)T) (2.15)
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where Vu is the gradient of u and ( )T is the transpose operator.

2.4.2 Solution Procedure

The dependent variables are the pressure, defined at the center of the primary ceils, and

the volume fluxes defined on the faces of the primary cells. This selection is equivalent to

a finite-difference formulation over a staggered grid with the choice of scaled contravariant

velocity components as the unknowns.

First the momentum equations are solved for an approximate U l, which represents the

volume-fluxes over the /-face of a computational cell. This is done by computing AU t

defined by

AU z= (Ul)"+__ (U'),,

This first step velocity correction is obtained from the momentum equation by evaluating

the pressure gradient term at time step (n). Various time advancing schemes can be

implemented here. For example, an Adams-Bashforth type scheme used by Rosenfeld et

al. (1988) can be written as follows

(V_+½I_AtDz) A_I=At(_L,__ I_LIn-1_ R£(Ap,_-I) _ D_(AU_,,_-I))
(2.16)

where Dt represents viscous terms, L the convection terms and Rt the pressure gradient

terms.

In the second step, the velocity is updated such that the continuity equation is satisfied at

the next time level. This is achieved by a single Poisson type equation as below:

(R,(_))=__,, ((v,).+av')D,_ V_+_

Here, Di_ is a divergence-like operator defined by

.,.:: v:+_- u:__+L?+_- v"__+vo+_:- vo__:

(2.17)

Then, the variables at the new time level n + 1 are computed from AU t and the modified

pressure, ¢.
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3. COMPUTED RESULTS

3.1 Code Development

In the previous chapter, solution methods based on pseudocompressibility and a fractional

step approach have been described for 3-D applications in generalized coordinates. Several

computer codes have been developed following these procedures. Each code is given a

name listed as below. Results presented in the present paper will be identified with these

names.

INS3D Code

A steady formulation of the pseudocompressibility approach is solved using an approximate

factorization scheme. The spatial discretization utilizes second-order central differencing

with additional numerical dissipation terms. The code has been validated. Numerous 3-D

problems have been solved using this code.

INS3D-UP Code

This code is developed to obtain time-accurate solutions using the pseudocompressibility

formulation. It is necessary to satisfy the continuity equation at each time step by subit-

eration in pseudotime. An upwind differencing scheme based on flux-difference splitting

is used combined with an implicit line relaxation scheme. The code has been validated.

Major unsteady flow applications of this code include the simulation of the flow through

an artificial heart.

INS3D-LU Code

This code is also based on the pseudocompressibility formulation. However, a finite volume

scheme in conjunction with either central or upwind differencing is used for spacial dis-

cretization. An LU-SGS implicit algorithm is employed for temporal discretization. This

code has an option to utilize a rotating coordinate system so that rotor-steady state solu-

tions (steady in a relative frame of reference) can be computed. The code is completely

vectorized and validation is in progress in conjunction with the SSME turbopump flow

analysis.

INS3D-FS Code

This code is based on a fractional-step method for computing time-accurate solutions. The
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governing equations are discretized using a finite-volume approach on a staggered grid. A

four-color ZEBRA scheme is devised for solving the Poisson equation for the pressure

correction. The code validation is in progress.

3.2 Code Validation

Validation of some of the above flow solvers was done by choosing several basic configura-

tions relevant to local flow encountered in problems of current interest such as the SSME

power head. To remove uncertainties coming from turbulence modeling, the first validation

cases were chosen in the laminar range of Reynolds numbers first, followed by turbulent

case calculations. Examples are presented here.

Flow Over A Circular Cylinder

To represent an external flow, the flow past a circular cylinder was computed. Physically,

for external flows, the pressure wave can quickly travel a short distance to balance the

viscous region close to the body. The appropriate range of fi in INS3D can be estimated

based on this reasoning. In general, the magnitude of fi is less restrictive for external

flow than for internal flow. Several steady-state solutions were computed using the INS3D

family of codes and showed good agreement with experiments and other computations

(Kwak et al. 1986, Rogers and Kwak, 1988).

To capture the near field detail of transient flow, an impulsively started circular cylinder

at Re=40 and 200 is computed using INS3D-FS code (see Rosenfeld et al., 1988, 1989).

In Figure 1, time evolution of the separation length is compared with experiments by

Coutanceau and Bouard (1977) and other computations by Collins and Dennis (1973).

The comparison is very good.

As the Reynolds number increases above 40, a nonsymmetric wake develops and periodic

vortex shedding sets in. Both INS3D-UP and INS3D-FS codes are validated using this

problem. These computations are compared with other numerical and experimental results.

Figure 2 shows a StrouhaJ number plot versus Reynolds number from computed results

compared to experiments. Good agreement is observed.

The staggered pattern of the vortex shedding known as Karman's vortex street has been a

subject of many flow visualization studies. For the purpose of comparison, particle traces

are generated from the time-dependent solution of flow around a circular cylinder at a

Reynolds number of 105 using the INS3D-UP (see Rogers and Kwak, 1988). In figure 3,

this computed vortex street is shown on top. Shown in the bottom half of the figure is an
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experimental photograph of the same conditions taken by S. Taneda and reproduced from

Van Dyke (1982). The streaklines in the experiment are shown by electrolytic precipitation

in water. The vortex structure is seen to be very similar between the two. The experi-

mental picture is digitized and displayed on a workstation along with the computationally

generated flow visualization picture.

Curved Duct of Square Cross-Section

The flow through a square duct with 90 ° bend offers a good test case for a full Navier-

Stokes solver. This flow is rich in secondary flow phenomena both in the corner regions

and through the curvature in the streamwise direction. This geometry was studied experi-

mentally by Humphrey et al. (1977) and Taylor et al. (1981, 1982), and extensive laminar

flow data are available. This particular geometry was used as a steady state test case for

the INS3D family of codes. The geometry is shown in figure 4 and the Reynolds number

of the flow is 790. The problem was non-dimensionalized using the side of the square

cross-section. The inflow velocity was specified to be that of a fully developed, laminar,

straight square duct (see White, 1974). The velocity is normalized by the average inflow

velocity. The computed results are compared to the experimental results of Humphrey et

al. (1977) as shown in figure 5. Overall, the comparison is quite satisfactory.

Extensive validation of the INS3D was performed by McConnaughey et al. (1989) utilizing

the detailed inflow measurement by Taylor et al. (1981, 1982).

3.3 Space Shuttle Main Engine (SSME) Power Head Flow Simulation

Background

To increase the payload capability of the Space Shuttle, it is essential to understand the

dynamics of the hot-gas flow in the engine power head. Because of the complexity of

the geometry, an experimental approach is extremely difficult as well as time consuming.

Computational simulation, therefore, offers an economical tool to complement the experi-

mental work in analyzing the current configuration, and to suggest new, improved design

possibilities.

The current arrangement for the SSME power head components is illustrated in figure 6.

In the present staged combustion cycle, the fuel is partially burned at very high pressure

and relatively high temperature in the preburners. The resulting hot gas is used to run

the turbine. Hot gas discharged from the gas turbine passes through an annular 180 ° turn
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before it diffuses into the fuel bowl. This assembly is called the hot gas manifold (HGM).

The gas flows through transfer ducts into the main injector where, along with additional

oxidizer, it is injected into the main combustion chamber. The Reynolds number of the

primary flow in the manifold is of the order of 10 e per inch. Because of the high gas

temperature, the Mach number is less than 0.12. The flow is turbulent and is practically

incompressible. As a part of the engine development effort, a CFD study has been con-

ducted to simulate the dynamics of the hot-gas flow in the power head. Examples of the

computed results presented in this section have been obtained using the INS3D code.

Computed Results

A computational model of the power head is chosen to analyze critical areas where the

dynamics of the hot-gas flow are expected to have a significant effect on the overall per-

formance of the SSME. As shown in figure 7, the model starts from the gas turbine exit

on the fuel preburner side, and extends to the main injector assembly. The grid for the

entire HGM system is generated by using algebraic functions, and is written with a high

degree of flexibility to allow for changing geometric configurations.

For such a complicated turbulent flow as is encountered in the SSME, high level turbu-

lence models such as a two-equation k-e model or Reynolds-stress model may be needed.

However, for many engineering applications, a simple yet adequately accurate algebraic

model will be of considerable value for design purposes. Chang and Kwak (1988) devised a

simple extended Prandtl-Karman mixing length theory which, together with the strength

of the vorticity, forms an eddy viscosity model. This model has been used for the present

simulation.

Extensive computational flow analysis was performed to identify the areas of potential

improvement. From this computational flow analysis and also from experiments, the center

duct of the current three-transfer-duct HGM is found to transfer a limited amount of

mass (about 10% of the total flow). Also the transverse pressure gradient remains large

and a large separation bubble is observed after the 180 ° turn. To improve the quality

of the flow, a large-area, two-duct design concept has been developed. Then, to reduce

the large separation bubble after the 180 ° turn, over 20 different two-duct configurations

were studied computationally, thereby providing potentially the optimum geometry to the

designers.

The turbulent solution for the new two-duct HGM is compared to that of experiments

performed using both the current three-duct HGM and the new two-duct configuration.

As shown in figure 8, the pressure gradient around the fuel bowl of the HGM is greatly
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reduced from that of the original configuration. From the hardware perspective, this

results in substantially reduced loads on the bearings which hold the gas turbine and the

turbopump.

The most significant objective of the present study is to pinpoint the locations where flow

experiences the most energy losses. An important measure of the energy losses is the

mass-weighted average total pressure along the flow. Figure 9 illustrates the decreasing

coefficient of the mass-weighted total pressure along the centerline of the turnaround duct,

the fuel bowl, and the transfer duct. In the figure, three different HGM configurations are

compared. The initial two-duct design shows 28% less total pressure drop than the current

three-duct version. After the two-duct configuration was fine-tuned computationally, the

pressure drop decreased even further to 36% less than the original configuration. This

final configuration is then tested using cold air flow, which showed a 40% reduction in

pressure loss. This example illustrates the value of CFD in aerospace design. More detailed

informaion can be found in our earlier publications (see Chang et al. 1988, Yang et al.

1987, Kwak 1989)

3.4 Artificial Heart Flow Simulation

Background

Recently, the demand for mechanical hearts or ventricular-assist devices (VAD) as a tempo-

rary life support system has grown. These devices are becoming powerful tool for assisting

patients to recover from heart attacks or as a temporary bridge to transplants. A research

and development effort is in progress to improve the flow quality in these devices as well

as to develop better materials and control systems. Experimental investigations on these

devices are very limited and many aspects of the flow in the devices are yet to be studied.

Therefore, it will be very valuable to medical researchers to simulate the flow by applying

state-of-the-art CFD technology (see, for example, Peskin, 1982).

Blood flow through these mechanical devices is very complicated in many respects. The

fluid may exhibit significant non-Newtonian characteristics locally and the geometry is

usually very complicated. In an artificial organ, as red blood ceils go through high shear

turbulence regions, they may be damaged; the downstream region of an artificial heart valve

is an example. The flow is unsteady, possibly periodic, incompressible and very viscous.

This problem is very much interdisciplinary so an attempt for a complete simulation would

be a very formidable task. However, an analysis based on a simplified model may provide

much needed physical insight into the blood flow through these devices.
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The formulation of the flow solvers described earlier in this paper is based on a Newtonian

fluid assumption. However, since the governing equations are solved in a generalized

coordinate system, viscosity that varies in space and time, as well as a moving geometry, is

allowed. The primary purpose of the current application is to demonstrate that technology

developed for aerospace can be extended to biofluid analysis. Among many variations, the

present demonstration calculation is being performed on the Penn State artificial heart

(Tarbell et al., 1986). In the computational simulation, the time-accurate INS3D-UP code

is used.

Computed Results

The actual model of the Penn State artificial heart poses some very difficult problems from

a computational stand point. A schematic and a computer model of the heart are shown

in figures 10 and 11, respectively. The heart is composed of a cylindrical chamber with

two openings on the side for valves. The pumping action is provided by a piston surface

which moves up and down inside the chamber. The actual heart has a cylindrical tube

extending out of each of the valve openings. These tubes contain tilting flat disks which

act as the valves. The current computational model will neglect the valves altogether and

will use the right and left openings shown in

figure 11 for the inflow and outflow boundaries, respectively. In the computations, as the

piston reaches topmost position, the outflow valve closes and the inflow valve will open

instantaneously. Similarly, as the piston reaches its bottommost position, the outflow valve

will open and the inflow valve will close.

The calculations were carried out on a Cray 2 supercomputer with an H-H grid topology

and grid dimensions of 39 x 39 x 51. The computations started with the fluid at rest,

the piston at the bottom position, and the outflow valve open. The velocity of the piston

during the period of motion between its maximum and minimum positions was set to be

constant, which is very nearly the same as that in the actual heart device. The period of

the entire piston cycle was set to a time of five non-dimensional units, and the time step

was chosen so that 200 physical time steps were required for each full cycle of the piston.

Some very interesting flow physics occurred during this period of motion. Various post-

processing techniques have been utilized in analyzing the results, such as velocity vectors

colored by pressure level and vorticity magnitude contours which can be related to the

wall shear stress. Figure 12a shows particle traces as the piston nears its bottomposition.

Two distinct vortices are seen to have formed from the flow separation that occurs as it

enters through the inflow valve. In figure 12b, an experimental photograph (J.M. Tarbell,
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Pennsylvania State University, private communication, 1988) shows bubbles entering the

inflow valve as the piston nears its bottomposition. A similar two-vortex system is seen to

form here.

The present solution shows the capability of the computational procedure for simulating

complicated internal flows with moving boundaries. For this initial calculation, the motion

of the piston of the actual device was simplified. Also neglected was the valve opening and

closing, which will be simulated in the future. This work represents simply the first step

toward developing a CFD tool for this type of flow.

4. CONCLUDING REMARKS

In the present paper, numerical simulation methods for viscous incompressible flows are dis-

cussed from an application point of view. Our main interest has been in three-dimensional

real-world geometries. Naturally, the computational requirements for these problems are

different from fundamental fluid dynamics studies. Therefore, the main emphasis has

been placed on a primitive variable formulation, which has been the most commonly used

approach for three-dimensional problems to date.

In a practical sense, even though computer speed and memory have been increased sub-

stantially in the recent past, the speed and memory requirements of a flow solver are still

dictated by the turnaround time. In many engineering applications, it is very important to

generate solutions in a timely fashion to make an impact on the design and analysis. We

feel that numerical simulations can now provide complementary information to measured

data, thus reducing the number of experimental trims required for developing advanced

flow devices. A more sophisticated approach, such as computer optimization of a design

can be attempted when the flow solver becomes at least one order of magnitude faster

or the computer speed can be improved that much, perhaps by through use of massive

parallelism.

There are several areas to be considered in developing a new generation of fast flow solvers.

Several additions to the technology presented here will help to make the current methods as

emcient as possible. Multigrid acceleration is one possibility which is physically consistent

with the incompressible formulation. Overall, the solution procedure should be developed

to best utilize computer characteristics such as vectorization, parallel processing, and access

to memory.

In the development of a universal code, it is hard to devise the best scheme for all flow
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speeds and for many different types of flow. Because of the uncertainties related to the tur-

bulence model, it seems better to have a specialized code suitable for each class of problems.

For example, one can imagine having a code for an impeller-type problem while having

another for flow over aerodynamic shapes. Despite the limitations in algorithm speed and

accuracy and computer speed and memory, when the state-of-the-art flow solvers are com-

bined with creative researchers, the result will be tremendously beneficial for developing

modern devices requiring viscous incompressible flow analysis.
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Figure 4,'Geometryof a square
duct with 90° bend.

Computation (41x21x21 grid)
.... INS3D-UP

_- INS3D-LU

INS3D-FS

Experiment

+ Humphrey et al. (1977)

0 - 60 °

+

0 " 300

0 -0 °

x:-2.5

x:-5.0

0 .5 1.0

r

+ + ¢

_. ÷.i.÷ ÷ ,"

0 .5 1.0

r

Figure 5.-Streamwise velocity profile for
flow through a 90 ° bend at Re=790 : (a)
xy-plane at z=0.25. (b) xy-plane at z=0.5

22



!

c_

0

0

c_

©

i

23



[_)
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(a) vertical cross-section (B-B). (b) horizontal cross-section (A-A).

&_" _ Q Computation (Y_ng et LI,,1987:[NS3D)

/ _ (turbulent solution .t Re= 1 9x I 0')

s_S" / \ O 2-duct experiment

2.0-

I 1,6-

0.8-

o.o -- • ....... P_F !_ It
-180 -135 -60 _ 0 45 90 |3S 160

CIRCUMFERENTIAL ANGLE, @
CROSS-SECTION A-A

Figure 8.'Pressure coefficient on fuel bowl outer surface after 180 ° turn.

IMPROVED DESIGN

0 _ (2 TRANSFER DUCTS)

uJ _k,. INLET I/'-

_] __ i _,_.,_ r/ FLOW PASSAGE

_-,I \ % _j CROSSSECT,ON
-= / "_\ l

-_ / "_ ,MPROVED
_) Z_ 2L _k. DESIGN(2) 36%

>" I :L.._ -- "_ IMPROVE
_ / ' MENT
(j ! IMPROVED
Z i _ DESIGN {1) , 283£

¢_ _r -_L \ IMPROVE-

_ _ CURRENT ENGINE \_ MENT
eL _ ] (3 TRANSFER DUCTS) _'_'-_%---c_--_>.j

I

J
-4 t

COLD AIR TEST

I 40%

IMPROVE-

MENT

0 4 8 12 16 20 24

DISTANCE ALONG CENTERLINE. MEASURED FROM INLET, m.

Figure 9:'Pressure losses in three-duct and two-duct HGM.

24



Flaccid _Iair sac

Left diastole Left systole completed
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a. Computational results

Ix Experimental results

Figure 12.-Incoming particle traces as the piston nears the bottommost position:
tt computation (Rogers et al., 1989). (b) experiment (J.M. Tarbell, Pennsylvania

ate University, 1988).
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